
Branch Prediction with Bayesian Networks

Jeremy Singer, Gavin Brown, and Ian Watson

University of Manchester, UK

Abstract. This paper studies the architectural problem of branch pre-

diction. We analyse the popular technique of two-level adaptive predic-

tion, relating it to the state-of-the-art Machine Learning technique of
Bayesian Networks (BNs). We show that a two-level predictor is an ap-
proximation to the BN formalism. This link allows us to explore the wider
family of BN predictors. We investigate how to adapt BN techniques to
operate within realistic hardware constraints, using the same primitive
components that are present in existing branch predictors. We system-
atically study how performance is affected by these simplification. We
aim to use these ideas to reduce the storage overhead of BN predictors
without losing significant prediction accuracy. The key motivating factor
is that storage required in two-level predictors grows exponentially with
branch history length, whereas BNs provide a framework to reduce this
overhead.

1 Introduction

There is an increasing trend to apply machine learning (ML) techniques to di-
verse prediction problems in computer systems. Recent examples include archi-
tectural simulation [1] and operating system message passing [2]. A challenging
case appears to be the online learning problem of branch prediction since it re-
quires (1) high accuracy, (2) low latency and (3) low implementation complexity.

1. High accuracy is essential, since predictors deployed in existing commod-
ity processors achieve accuracy rates of over 97% on integer benchmarks
[3]. However even slight improvements on this score are welcome, since the
branch mispredict penalty is increasing all the time, with longer pipelines
and speculative execution schemes relying on almost-perfect branch predic-
tion.

2. Low latency generally means that the predictor must be able to supply a
result in less than than a single processor cycle [4]. With the seemingly
relentless increase of clock speeds, this latency requirement becomes ever
more demanding.

3. Low complexity is necessary to ensure that the predictor designs can be
fabricated in realistic transistor budgets, using low storage overheads and
simple inputs that are trivially available in existing processor layouts.

1.1 Motivation

This paper relates a popular ML technique, Bayesian Networks (BNs), to exist-
ing branch prediction technology, two-level adaptive branch predictors [5], partic-
ularly the GAg and gshare schemes. We investigate how to adapt BNs to operate
within realistic hardware constraints, by using the same primitive components
that are present in existing branch predictors. We systematically study how per-
formance is affected by these simplifications. We aim to use these ideas to reduce
the storage overhead of two-level predictors without losing significant prediction
accuracy. The key motivating factor is that storage required in two-level predic-
tors grows exponentially with history length, whereas BNs provide a framework
to reduce this overhead. The general community consensus is that longer history
allows more accuracy, only the exponential growth rate of two-level adaptive
predictors prevents longer histories from being used.

1.2 Contributions

This paper has four main contributions.

1. It simplifies the design of BNs so that they are suitable for hardware imple-
mentation.

2. It studies how the parameters of the BN model affect its prediction accuracy
and storage capacity, the age-old tradeoff in a new context.

3. It discusses the theoretical relation between the GAg predictor and the fully
connected Bayesian Network.

4. It explores whether BNs are a suitable alternative to GAg or gshare for
branch prediction tasks.

2 Background

Any project that combines research from two distinct areas has the task of
communicating with two distinct audiences, often with very different research
objectives. In this work we attempt to use consistent terminology throughout,
so after clarification, some ML concepts may be given architectural labels and
vice versa. Section 2.1 describes the practicalities of two-level prediction from
an architectural perspective. Section 2.2 outlines the theory of BNs from a ML
perspective. Section 2.3 relates these two approaches to prediction, highlighting
potential research issues.

2.1 Two-Level Adaptive Branch Prediction

Conventional branch predictors in the systems architecture community are gen-
erally implemented as lookup tables. This paper focuses on predictors composed
of a global table indexed by a global history register. Yeh and Patt describe
these as GAg schemes [5].

Each table entry is a 2-bit bimodal counter [6]. When the branch is taken, the
appropriate counter is incremented until it saturates at 112. When the branch
is not taken, the appropriate counter is decremented until it saturates at 002.
The more significant bit is used to determine whether the predicted outcome is
taken or not taken. The bimodal counter provides hysteresis, or the ability to
remember general previous behaviour despite transient variations, for instance
after the last iteration of a loop.

The index into this table of counters is derived from the outcomes of the
most recently executed branches. Hence such schemes are known as finite context
method predictors since they use a finite context of recent global branch history
outcomes to construct the table index. This finite context is recorded in the
global history register which operates like a shift register, shifting in the most
recent branch outcome as the least significant bit after each branch instruction
execution. In the simplest case (GAg), this global history is used as the table
index directly, which means that the table must have 2n entries where n is the
length of the global history register. In a more complicated case, the global
history may be XOR’d with low-order bits from the branch instruction address.
This scheme is known as gshare [7]. Its XOR-based hashing function spreads the
branch predictions more evenly throughout the table. This spreading alleviates
the aliasing problem, which can occur when different branch instructions with
different history patterns (although with a common suffix) map onto the same
table entry.

2.2 Bayesian Networks

Bayesian Networks are a type of probabilistic model—a mathematical formalism
within the field of Machine Learning, capable of representing and manipulating
arbitrary probability distributions over arbitrary random variables. These are
now commonly accepted as a state-of-the-art learning technique, finding appli-
cations in numerous domains from medical informatics to traffic control.

Bayesian Networks (BNs) are represented as directed acyclic graphs, where
each node represents a different random variable. A directed edge from node
X to node Y indicates that X has a direct influence on Y . This influence is
quantified by the conditional probability P (Y |X), stored at node Y . Nodes in a
network can be of two types: evidence (or attribute) nodes, and query (or class)
nodes.

For our purposes, BNs have multiple evidence variables X1, X2, . . ., Xn and
a single class variable C. In terms of branch prediction, the evidence is the value
of previous branch outcomes. Xn is the outcome of the most recently committed
branch and X1 is the outcome of the oldest branch on record. The class node C
represents the predicted next branch outcome. We adopt the standard encoding
for branch outcomes, that 0 denotes ‘not taken’ and 1 denotes ‘taken’. Thus all
variables in the network are boolean.

The task of any branch predictor is to predict the next outcome, which can be
rephrased as predicting the chance of each possible outcome (taken/not taken),
given the evidence of previous outcomes. In the language of probability theory,

this is the posterior probability, P (C|X1, . . . ,Xn). One approach to this is to
attempt to devise a function that will directly estimate this value. This is the
approach taken by the majority of predictors to date.

Alternatively, Bayes’ theorem can be used to rearrange the problem,

P (C|X1,X2, . . . ,Xn) =
P (C) P (X1,X2, . . . ,Xn|C)

P (X1,X2, . . . ,Xn)
(1)

In practice, for a fixed branch history vector (X1,X2, . . . ,XN) the right-
hand denominator is fixed. So we disregard this constant scaling factor. Now the
numerator can be rearranged according to the rules of conditional probabilities,
giving us a decision rule

if P (C = 1)P (X1, . . . ,Xn|C = 1) > P (C = 0)P (X1, . . . ,Xn|C = 0)
then predict taken

else predict not taken

The power of this approach is that we can make assumptions on the depen-
dencies between the branches contained in the branch history buffer.

The simplest type of BN is called Naive Bayes (NB). This assumes that all
the attributes are independent of each other. Figure 1 shows a NB network.

C

X1 X2 Xn

Fig. 1. Naive Bayes classifier

The independence property removes the dependence between each Xi and
Xj , simplifying to:

P (C|X1,X2, . . . ,XN) α P (C)
∏

i

P (Xi|C) (2)

Note that we employ upper case letters (X) to denote random variables, and
lower case to denote specific values (x).

For a given history vector x1, x2, . . . , xn, we calculate P (C = c|X1 = x1,X2 =
x2, . . . ,XN = xn) using Equation 2 above, for each possible value of c (in our
case either 0 or 1). We select as our prediction the more likely value, i.e. the
one with the higher conditional probability. (Note that the scaling constant of
proportionality is the same for all values of C.)

Although the NB classifier makes simplifying assumptions, it performs ro-
bustly for many prediction tasks.

Now we consider the space requirements of the NB classifier in terms of
number of probability values that must be stored. Note that probabilities can be
represented in different ways in hardware, as Section 3 explores. So, since there
are two possible values for C, we require one probability value P (C = 1). We
can calculate P (C = 0) as 1 − P (C = 1). Then, for each attribute Xi, each
corresponding to a bit of global history, we require two conditional probabilities.
P (X = 1|C = 0) and P (X = 1|C = 1). Again, we can derive P (X = 0|C = c) as
1−P (X = 1|C = c). This means, in total, we must remember 2n+1 probabilities,
where n is the length of the global history register.

Friedman et al [8] show that the performance of a BN improves when aug-
menting edges are added between attributes. Recall that the NB classifier as-
sumes all attributes are independent of one another. An augmented naive Bayes
classifier relaxes this assumption by allowing edges between attributes.

A tree-augmented naive Bayes classifier (TAN) is a BN in which the class
variable C has no parents and each attribute Xi has as parents the class vari-
able and at most one other variable. Figure 2 shows a TAN network, in which
each attribute Xi depends on the preceding attribute Xi−1. In terms of branch
prediction, this means that a historical branch outcome depends on the prior
branch outcome.

C

X1 X2 Xn

Fig. 2. Tree-augmented Naive Bayes classifier

The probability equation now looks like:

P (C|X1,X2, . . . ,Xn) α P (C) P (X1|C) P (X2|X1, C) . . . P (Xn|Xn−1, C) (3)

Whereas NB stores 2n + 1 probability values for a history length n, TAN
requires 4n − 1 probability values, due to the additional dependences in the
conditional probabilities. However the asymptotic space complexity is still O(n).
It is possible to add further augmenting edges to the BN, until eventually it
becomes fully connected. In a fully connected Bayesian network, if there are n

attribute nodes and one classifier node, then each node is a member of n edge
relations, either incoming or outgoing.

2.3 Relating Bayesian Networks and GAg

The GAg scheme effectively stores P (C|X1,X2, . . . ,Xn) directly, using 2-bit bi-
modal counters as discretized estimates of conditional probability. This paper
shows how we can use Bayes’ rule to approximate this conditional probability,
storing fewer probability values along the way. However, poor accuracy of pre-
dictors leads us to conclude that the NB network and its improvements do not
capture sufficient dependence information for good prediction accuracy. This
could be due to compound errors from approximations to probability multipli-
cation.

3 Modifying Bayesian Networks for Hardware

Implementation

The default NB model requires some adaptation to make it suitable for deploy-
ment in hardware. This section shows how a simplification of the NB model can
be implemented using standard hardware components from existing branch pre-
diction schemes, with a small storage overhead. Thus the simplified NB predictor
satisfies two requirements from Section 1: low latency and low implementation
complexity.

3.1 Representing the Probabilities

Equation 2 shows that a NB classifier requires the following probability values
to be stored, or at least estimated: P (C = 1) and each P (Xi = 1|C = c) where
i is bounded by the length of the global history register, and c ∈ {0, 1}. Recall
that Xi is the ith bit of the global history register, storing the ith most recent
branch outcome.

The accurate calculation of probability values requires frequency counts of
events. For instance, to calculate P (Xi = 1|C = 1) requires two event counters:

1. number of times that Xi = 1 and C = 1
2. number of times that C = 1

The second event counter will be reused for many probability calculations.
However asymptotically the number of event counts scales as O(n) with the
history length n, in the same way as the number of probabilities.

Unfortunately, such event counts require an unbounded amount of storage.
It is not possible to record probabilities as floating-point numbers since then
it is not possible to know the relative significance of each new event, so the
probabilities cannot be updated properly.

One workaround solution is to have a fixed window of recent events (like
the global history register). It would be possible to store bounded counts in

relation to this window size. This gives us a bound on storage capacity but there
is another difficulty. The event counts have to be converted into probabilities
using floating point arithmetic, which is almost certainly too complicated to
include in the prediction unit. It may be possible to work in terms of logarithms,
then the calculations become integer arithmetic but this is still too complex.

Discrete Approximations to the Probabilities A simpler scheme uses 2-bit
bimodal counters, inspired by the conventional table-based prediction schemes
such as GAg and gshare. This effectively discretizes probability estimates. So
P (Xi = x|C = c) can be a value from the set {002, 012, 102, 112}. We use Smith’s
standard update scheme with increment/decrement and counter saturation at
002 and 112 [6]. For each bit of history, there are two counters pi,0 and pi,1 one
for the case when c=0, the other for c=1. Counter pi,0 will be updated when the
branch outcome is 0. It will be incremented if xi = 1, and decremented if xi = 0.
On the other hand, counter pi,1 will be updated when the branch outcome is 1.
Again, it will be incremented if xi = 1, and decremented if xi = 0. There is also
a counter pc, which is incremented every time the branch outcome is taken and
decremented every time it is not taken.

So counter pi,c corresponds to the original probability value P (Xi = 1|C = c).
Just as we can compute P (Xi = 0|C = c) using 1 − P (Xi = 1|C = c), we can
compute the corresponding 2-bit bimodal counter as 112 − pi,c. For the rest of
this section, we define function q as follows:

qi,c =

{

pi,c when xi = 1
112 − pi,c when xi = 0

This scheme provides a discretized estimate of posterior probabilities.

qi,c P (Xi = xi|C = c)
002 0
012 1/3
102 2/3
112 1

It might be possible to use these discretized probabilities to perform the ac-
tual probability calculation from Equation 2, using either lookup tables or simple
binary algebra. However, the high frequency of 002 values ensures that most cal-
culations generally result in 002 answers. The more satisfactory alternative to
predict the outcome is to determine the more likely value (0 or 1) in the most
significant bit of each bimodal counter indicated by Equation 2. So, for a history
vector x1, x2, . . . , xn, we determine which of the following sets of counters has
more top bits set: either (a) {pc} ∪

⋃

i qi,1, or (b) {(112 − pc)} ∪
⋃

i qi,0. If (a)
has more top bits set than (b) then the predicted outcome is 1, otherwise the
predicted outcome is 0.

The storage overhead of this 2-bit bimodal NB predictor is: two 2-bit counters
for each bit in the global history register, plus one counter for C. This is a small

storage overhead indeed. Moreover it scales linearly with history length, whereas
the gshare storage scales exponentially.

Figure 3 shows how the simplified NB predictor is conceptually implemented
in hardware. This schematic diagram shows that the set of 2-bit counters is
arranged as a 3-d array, based on (c, i, xi) where c is branch outcome, i is history
bit index and xi is the actual value of the ith history bit. In fact, since the limits
of each dimensional index are fixed in advance, the 3-d array can be flattened
to a linear vector. Also note that in the xi dimension, we only need to store the
2-bit value v for when xi = 1, since we can calculate the value for when xi = 0
as 112 − v. The same applies for the unconditional probabilities P (C = 1) and
P (C = 0). Thus it is clear to see that for n bits of global history, the simplified
NB predictor stores 2n + 1 counter values.

The figure shows how to calculate the likelihood that the next branch out-
come will be 0. We use counters from the c = 0 row and select between the
xi = 0 and xi = 1 counters for each i based on the corresponding values in the
global history register. We check the top bits for each selected counter and sum
to see how many of these top bits are set. Then we do the same for the c = 1
row. We use a comparator (not shown in figure) to determine which outcome is
more likely, and use this outcome as our prediction.

Predictor state update works in a similar way. We use the actual branch
outcome to determine whether to update the c = 0 or c = 1 row. We update the
xi = 1 counters based on the values in the global history register—increment
the counter if xi = 1 or decrement if xi = 0.

4 Evaluation Framework

We use the recently released second championship branch prediction framework
(CBP2) [9] to evaluate our branch prediction implementations. Each implemen-
tation is coded in high-level C++, although in such a way that could easily
be encoded in hardware. Thus arrays will map into indexed table lookups, in-
tegers will become bit strings, shifts and masks are used for bit selection and
concatenation, and so on.

The default predictor is a simple gshare implementation. We compare all
our predictors in this paper with this default gshare predictor. The framework
includes a selection of real-world execution traces containing branch information.
For each branch, the predictor is supplied with the branch instruction address
and the branch target address. From these inputs and its internal state, the
predictor must predict the branch outcome. Some short time later, the result
of this branch is fed back to the predictor to enable it to update its state. The
framework keeps track of the prediction accuracy and reports this at the end of
the trace. Traces cover programs from benchmark suites including SPEC INT
2000 and SPEC JVM 98. The final result for a trace is reported in units of
MPKI, which is mispredicts per 1000 instructions. The final result for all the
programs is taken as the arithmetic mean of all individual traces. We modify
the framework to report results in terms of percentage of mispredicted branches,

Fig. 3. Schematic diagram of simplified Naive Bayes predictor, calculating the likeli-
hood that the next branch outcome will be 0 given the history 1010. The complete
calculation requires checking the likelihood that the next branch will be 1, and then
selecting the larger probability as the predicted outcome.

which is the conventional metric for branch prediction accuracy. CBP2 is an
industrial quality simulation framework for branch prediction. Its predecessor,
CBP1, has been comprehensively analysed by Loh [10].

The CBP2 default gshare predictor achieves a score of 6.3 MPKI (just under
5% misprediction rate). In CBP1, the winning predictor achieved a score of
2.5 MPKI. Any new predictor will need to have comparable performance and
hardware complexity if it is to be accepted as a realistic alternative to current
implementations.

5 Predictor Comparison: unbounded versus bounded NB

This section investigates how the NB simplification affects prediction accuracy.
We implement two predictors, u-NB and n-NB. The u-NB model is an unbounded
NB predictor, as described in Section 3.1. It keeps unbounded integer counts of all
necessary events. It uses double-precision floating-point arithmetic to calculate
all probabilities. It computes Equation 2 exactly to determine the most likely
outcome. The n-NB model is the bimodal simplification as outlined in Section
3.1. It maintains probabilities as n-bit bimodal counters. These are updated with
saturating increments or decrements. The prediction is made by examining top
bits and choosing the outcome that has more top bits set.

Figure 4 shows the accuracy scores for u-NB, 2-NB and 4-NB on the CBP2
dataset, with different lengths of global history register. It is clear to see that
accuracy improves as history length increases. This trend is apparent for both all
three predictors. Although 2-NB tracks the performance of u-NB for short history
lengths, the divergence increases with history length. The 4-NB predictor is more
accurate than u-NB for all history lengths, and the performance improvement
is sustained over longer history lengths than 2-NB. This is a most satisfactory
result—our discrete approximation to the NB algorithm performs better than
the original algorithm, for this dataset. This is because 4-bit counters provide
enough hysteresis to avoid being upset by transient behaviour, but they are
sensitive enough to forget the distant past history, in a way that u-NB cannot.
Section 7.2 discusses this tradeoff further.

6 Predictor Comparison: NB versus gshare

This section compares the performance of our n-NB predictor with the standard
gshare predictor. A fair comparison must ensure that predictors use equal stor-
age capacities. We assume that the rest of the prediction logic to be roughly
equivalent, so when we set the storage capacities to be equal then the predictors
have equivalent implementation complexity.

For the 4-NB predictor from the previous section, with a history register
length of hb, there will be 2hb + 1 4-bit bimodal counters, making a total of
8hb + 4 bits. In contrast, a gshare predictor for history length hg will have a
table of 2hg entries, each of which is a 2-bit bimodal counter, making a total of

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 0 10 20 30 40 50 60

m
is

pr
ed

ic
t r

at
e

history length

u-NB
2-NB
4-NB

Fig. 4. Comparison of Naive Bayesian Predictors

2hg+1 bits. A rearrangement of these equations shows that to have equal storage,
the gshare predictor must have history length hg = ⌈1 + log2(2hb + 1)⌉.

We investigate how these equations effect the predictors by comparing 4-NB
predictors of varying history lengths with equivalently sized gshare predictors
(with correspondingly shorter history lengths according to the above equation).
Figure 5 shows the difference in performance between equally sized 4-NB and
gshare predictors. Note that gshare is the clear winner and the performance
difference grows with history length.

Thus it is clear that the simple adaptation of NB is inferior to gshare, not
a suitable candidate for deployment in real processors. The next section inves-
tigates how to close this gap between n-NB and gshare, by considering different
improvements to the n-NB prediction scheme. We hope to retain the branch
predictor characteristics (from Section 1) of low implementation complexity and
low latency, while achieving high accuracy.

7 Exploring the Bayesian Predictor Family

There are various parameters in the n-NB predictor model that may be tuned in
order to improve the accuracy of predictions. This section considers tuning the
global history register length (Section 7.1), the bimodal counter length (Section
7.2), the set associativity (Section 7.3) and the connectedness of the BN (Section
7.4).

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 0 5 10 15 20 25 30

m
is

pr
ed

ic
t r

at
e

4-NB history length

gshare
4-NB

Fig. 5. Comparing performance of equally sized NB and gshare predictors

7.1 History Length

The standard method to increase prediction accuracy is to make the global
history register longer. This allows for more context in a prediction, reducing the
effects of the aliasing problem. Figure 6 shows how NB predictors, with different
bimodal counter lengths perform as the global history register length increases.
It is clear to see that the misprediction rate decreases as the history register
lengthens, although the rate of decrease reduces at higher history lengths.

7.2 Reactivity

The problem with the u-NB predictor from Section 3.1 is that it is insensitive
to sudden probability distribution changes or program phase shifts. In contrast,
saturating bimodal counters are able to react to such changes. The length of
the bimodal counter determines its hysteresis, or how long it takes to react to
changes.

We varied the length of the bimodal counters to find the optimum length. For
the benchmarks given, the optimum performance was 4-NB, as shown in Figure
6. Longer counters cause degraded predictions since since they take too long to
react to changes. Shorter counters cause degraded predictions since they forget
reliable old history in favour of extremely transient behaviour. Note that some
n-NB implementations outperform u-NB since u-NB is never able to ‘forget’ old
history, so it becomes progressively more difficult to react to phase changes.

 0

 10

 20

 30

 40

 50

 60

history length

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

counter length

 24
 26
 28
 30
 32
 34
 36
 38
 40

mispredict rate

Fig. 6. Naive Bayes predictor accuracy varies with history length and counter length

7.3 Set Associativity

A common reason for low prediction accuracy is aliasing. The gshare predictor
reduces aliasing by incorporating some low order bits from the branch instruc-
tion address into table lookup index. Another approach to reduce aliasing is set
associativity. In this case, there are several NB predictors operating in parallel
(NB/sa). The appropriate NB predictor to use for branch instruction b is based
on the low-order bits from the branch instruction address. This approach is com-
monly used in processor caches. We investigate how it works for NB predictors.
The main drawback is the growth in storage requirements for the predictor. The
storage space grows exponentially with the number of instruction address bits
used.

Figure 7 shows how set associativity affects the performance of the 2-NB
and 4-NB predictors, each with a global history register length of 20. The x axis
shows the number of bits of branch instruction address used, so the number of NB
predictors will be 2x. The graph shows how NB/sa prediction accuracy increases
with set associativity. This is due to the decreasing amount of aliasing. However
once the set-associativity exceeds a certain amount then the accuracy begins to
degrade, presumably because there are so many parallel n-NB predictors, each
for so few branch instructions that there is little or no global correlation between
branch instructions.

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

m
is

pr
ed

ic
t r

at
e

logarithm of set associativity

2-NB/sa
4-NB/sa

Fig. 7. Predictor performance improves with set-associativity

7.4 Network Connectivity

Section 2.2 described how the performance of the NB predictor can be improved
by adding augmenting dependence edges between the attribute nodes, result-
ing in an augmented Naive Bayes predictor (aNB). This section investigates
how these extra edges affect prediction accuracy. The conditional probability
terms simply gain extra dependent variables. So for NB each term has the form
P (Xi|C) which translates into two counters, for when (Xi = 1, C = 0) and
when (Xi = 1, C = 1). For TAN, each term has the form P (Xi|Xi−1, C) which
translates into four counters, for the four possible combinations of values for
(Xi−1, C). In the general case, if each term has m dependent variables, then it
requires 2m counters.

The update scheme only examines n+1 counters each time, one for P(C) and
one for each of the n history bits. It uses the values of the dependent variables
to determine which counter to select for each term. Similarly, a likelihood check
for a particular outcome only examines the top bits of n + 1 counters.

Figure 8 shows how increased network connectivity affects the performance
of the 2-aNB and 4-aNB predictors, each with a global history register length of
20. The x axis represents the maximum number of augmenting edges (AEs) per
node. (Edges always point forwards, so X1 can only depend on C, X2 on C and
X1 whereas Xn can depend on C and all of X1,X2, . . . ,Xn−1.)

When the number of AEs is 0, the predictor is the special case of NB. When
the number of AEs is 1, the predictor is the special case of TAN.

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 0 2 4 6 8 10 12 14 16 18

m
is

pr
ed

ic
t r

at
e

maximum number of augmenting edges per attribute

2-aNB
4-aNB

Fig. 8. Performance improves with increasing numbers of augmenting edges

8 Predictor Comparison: Improved NB versus gshare

Whereas Section 6 compared the performance of the n-NB predictor with equiv-
alently sized gshare predictor, this section compares the improved version of the
NB predictor with gshare. We combine all the NB performance enhancements
from Section 7. Note that some enhancements seem to provide greater improve-
ments than others. A more detailed empirical investigation would measure the
ratio of accuracy improvement to storage overhead for the different enhancement
schemes. Again, it is not clear how the various enhancements interact with one
another. For simplicity, here we assume independence. A more detailed study
would investigate this empirically!

We conducted numerous experiments, although we did not exhaustively ex-
plore the parameter space. Disappointingly none of our parameter settings en-
abled the bayesian predictor to achieve better accuracy than gshare, although
many settings were close. For instance, given a aNB/sa predictor that uses 4-
bit counters, 31 bit history, maximum of 15 augmenting edges and 256-way set
associativity, the average mispredict rate is 4.7%. In contrast, an equivalently
sized gshare predictor would have a history length of 19 bits, achieving accuracy
score 4.0%.

9 Related Work

Several papers characterize branch prediction as a ML problem. For instance,
Calder et al [11] use decision trees to predict branch outcomes at compile time,

based on static program features. Fern and Given [12] formulate dynamic branch
prediction as an online learning problem. They use ensemble learning techniques
that are suitable for ‘resource-limited environments.’ However they do not pro-
vide hardware implementation details and they focus on a small set of branches
that are difficult to predict.

Vintan [13] pioneers the idea of using perceptrons for branch prediction.
Jimenez and Lin [14, 15] go on to show how perceptrons can be implemented
in realistic hardware, and achieve better results than existing non-ML predic-
tors. However they require complex techniques to disguise the latency of their
perceptron predictor, involving cascaded predictors and pipelining.

Yeh and Patt [5] study a parameterized family of two-level adaptive predic-
tors. They fully explore this small parameter space, which has 9 members. Their
principled approach is a good guide for our work. Emer and Gloy [16] devise
a language to describe conventional branch predictor models, and then use ge-
netic programming to evolve new predictor models. However they admit that
the auto-generated predictors are ‘logically complex and probably not directly
implementable.’

Online feature selection [17] is another interesting ML problem. In our case,
we could chose which augmenting edges to insert dynamically, and perhaps adapt
for programs with different branching characteristics.

10 Concluding Remarks

This paper has shown that Bayesian Networks provide a useful formalism for
describing a family of branch predictors. The common GAg and gshare schemes
can be explained in relation to BNs in terms of conditional probabilities. We
have sketched a potential hardware implementation of this ML technique, and
performed some initial evaluation.

One interesting observation is that a full floating-point implementation of NB
is outperformed by our discrete approximation, using 4-bit bimodal counters.

Although we have not yet fully explored the space, we have found BN pre-
dictors that approach the gshare accuracy (to within 1%). We believe that this
framework provides promise for future branch prediction technology, particularly
in terms of storage overhead reduction. Our current research is focusing on fur-
ther exploration of the space, and application of ML methods to automatically
learn the best network connectivity, while the predictor is in use.

It should be noted that in adopting the BN formalism, we are addressing
a subtle aspect of branch predictors that has not been previously considered.
The Machine Learning literature can be broadly divided into two camps—
discriminative and generative learning. The form of learning we have used is
generative, since we model the joint distribution P (X,C). Neural branch predic-
tors [14] are discriminative, since they model the posterior distribution P (C|X).
The exact advantages of each in any given situation are an area of active research
and therefore constitute a novel and promising technology for the architectural
community to consider.

References

1. Hamerly, G., Perelman, E., Lau, J., Calder, B., Sherwood, T.: Using machine
learning to guide architecture simulation. Journal of Machine Learning Research
7 (Feb 2006) 343–378

2. Barham, P., Isaacs, R., Mortier, R., Harris, T.: Learning communication patterns in
Singularity. In: Proceedings of the First Workshop on Tackling Computer Systems
Problems with Machine Learning Techniques. (2006)

3. Hennessy, J.L., Patterson, D.A.: Computer Architecture A Quantitative Approach.
3rd edn. Morgan Kaufmann (2003)

4. Jiménez, D.A., Keckler, S.W., Lin, C.: The impact of delay on the design of
branch predictors. In: MICRO 33: Proceedings of the 33rd annual ACM/IEEE
international symposium on Microarchitecture. (2000) 67–76

5. Yeh, T.Y., Patt, Y.N.: A comparison of dynamic branch predictors that use two
levels of branch history. In: Proceedings of the Annual Symposium on Computer
Architecture. (1993) 257–266

6. Smith, J.E.: A study of branch prediction strategies. In: Proceedings of the Annual
Symposium on Computer Architecture. (1981) 135–148

7. McFarling, S.: Combining branch predictors. Technical Report TN-36, Digital
Equipment Corporation (Jun 1993)

8. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine
Learning 29(2-3) (1997) 131–163

9. Jiménez, D.A.: Second championship branch prediction (2006) http://camino.

rutgers.edu/cbp2/.
10. Loh, G.H.: Simulation differences between academia and industry: A branch predic-

tion case study. In: International Symposium on Performance Analysis of Software
and Systems. (2005) 21–31

11. Calder, B., Grunwald, D., Jones, M., Lindsay, D., Martin, J., Mozer, M., Zorn, B.:
Evidence-based static branch prediction using machine learning. ACM Transac-
tions on Programming Languages and Systems 19(1) (1997) 188–222

12. Fern, A., Givan, R.: Online ensemble learning: An empirical study. Machine
Learning 53(1-2) (2003) 71–109

13. Vintan, L., Iridon, M.: Towards a high performance neural branch predictor. In:
International Joint Conference on Neural Networks. Volume 2. (1999) 868–873

14. Jiménez, D.A., Lin, C.: Neural methods for dynamic branch prediction. ACM
Transactions on Computer Systems 20(4) (2002) 369–397

15. Jiménez, D.A.: Improved latency and accuracy for neural branch prediction. ACM
Transactions on Computer Systems 23(2) (2005) 197–218

16. Emer, J., Gloy, N.: A language for describing predictors and its application to
automatic synthesis. In: Proceedings of the 24th annual international symposium
on Computer architecture. (1997) 304–314

17. Fern, A., Givan, R., Falsafi, B., Vijaykumar, T.: Dynamic feature selection for
hardware prediction. Journal of Systems Architecture 52(4) (2006) 213–224

